>

浅谈直流电动机pwm原理【www.9927.com】 pwm应用详解

- 编辑:www.9927.com -

浅谈直流电动机pwm原理【www.9927.com】 pwm应用详解

基于C8051F313的新型电动自行车调速控制系统设计摘要:介绍了基于C8051F313电动自行车调速控制系统的设计方案。该方案的整个系统成本比较低,实时性强,可靠性高,性能好

本文主要是关于pwm的相关介绍,并着重对pwm的原理以及pwm直流电动机进行了详尽的阐述。

基于C8051F313的新型电动自行车调速控制系统设计

PWM直流电机

目前 ,在直流电机控制系统中 ,普遍采用以单片机或 DSP 作为微处理器的控制系统 , 由于单片机或DSP 控制电机占用端口资源多 、所需周边元器件也较多 ,对整个系统的稳定性和可靠性有较大影响 。可编程控制器作为一种工业控制装置 , 以抗干扰能力强和可靠性高而着称 , 随着可编程控制器的迅速发展 ,其性价比也在不断提高。

直流电机伺服驱动器的主电结构通常采用H桥,调速大都通过PWM方式,其调制方式大致有双极式、单极式和受限单极式三种。不同的PWM方式下电机的运行特性以及主电回路的开关损耗和安全性各有不同。无刷直流电机(BrushlessDCMotor,BLDCM)通常采用三相全桥主电路结构,以三相六状态方波控制运行,任一状态下有两只开关管受PWM控制,其PWM调制方式和直流电机的H桥PWM调制很类似,都是同时两只桥臂受控。直流电机调速PWM方式选择要依据技术指标要求。通常直流伺服控制系统大多采用双极控制,可以保证电机电流的连续性等要求,从而保证电机的快速响应性;对于调速系统,通常电机工作在较高转速、较大负载下,这时可选择单极式,或受限单极式,使主电路不易出现直通故障,工作可靠性高。同时,不同的PWM方式,桥式电路功率器件的损耗、热平衡及续流回馈也不尽相同。

系统软件设计

系统软件总体设计

系统程序主要包括转速检测显示程序、PI控制算法程序及PWM信号产生程序。转速检测显示程序实现对电机实际转速的测量,并利用组态王软件实时显示出来。PI控制算法程序利用PLC的PID功能指令实现速度的PI控制,并将PI控制器的输出值作为PWM控制信号的占空比。PWM信号产生程序利用PLC的PWM功能指令产生周期一定、占空比可调的PWM信号 [2] ?。

程序首先对高速计数器、PWM信号发生器和PID参数表进行初始化。然后设置定时中断,并启动定时器开始定时。接下来判断电机的转动方向,若正转,则判断正转高速计数器是否发生中断,否则判断反转高速计数器是否发生中断。高速计数器一旦发生中断,立即读取定时器的当前值,作为计算转速的时间值。之后判断是否发生定时中断,若是则执行定时中断程序,定时中断程序主要工作为定时器清零、高速计数器清零并重新启动、计算转速、转速标准化、执行PID指令、输出值转换及执行PWM指令,继而输出PWM控制信号,否则继续判断是否发生中断 [2] ?。

转速检测程序

转速的检测主要是通过光电编码器和PLC的高速计数功能来实现的。光电编码器和电机同轴连接,电机每转1圈,光电编码器A,B两路就产生一定数量的相位互差90°的正交脉冲。为此选择高速计数器为A,B两路正交计数工作方式。为使高速计数器正确工作,首先应向高速计数器的控制字节写入控制字,利用高速计数器的定义指令为所用的高速计数器选定工作模式,写入高速计数器的设定值,把当前值清零,采用当前值等于设定值的中断事件,建立中断连接,然后启动高速计数器。同时启动定时器,当高速计数器的当前值等于设定值时,产生中断,并同时把定时器的当前值读出来,作为产生所设定脉冲数的时间,从而可计算出转速。为提高测量精度,减少测量误差,可使用多个高速计数器,每个高速计数器检测不同时间范围的脉冲数。鉴于S7-200PLCCPU224有4个高速计数器具有A,B两路正交计数方式,程序采用了4个高速计数器进行计量,然后取其平均值。

摘要: 介绍了基于C8051F313电动自行车调速控制系统的设计方案。该方案的整个系统成本比较低,实时性强,可靠性高,性能好。

浅谈直流电动机pwm原理

1.脉宽 调 制 是利用数字输出对模拟电路进行控制的一种有效技术,尤其是在对电机的转速控制方面,可大大节省能量。PWM 具有很强的抗噪性,且有节约空间、比较经济等特点。模拟控制电路有以下缺陷:模拟电路容易随时间漂移,会产生一些不必要的热损耗,以及对噪声敏感等。而在用了PWM技术后,避免了以上的缺陷,实现了用数字方式来控制模拟信号,可以大幅度降低成本和功耗。

2.直流无刷电机

直流无刷电机由电动机、转子位置传感器和电子开关线路三部分组成。直流电源通过开关线路向电动机定子绕组供电,电动机转子位置由位置传感器检测并提供信号去触发开关线路中的功率开关元件使之导通或截止,从而控制电动机的转动。在应用实例中,磁极旋转,电枢静止,电枢绕组里的电流换向借助于位置传感器和电子开关电路来实现。电机的电枢绕组作成三相,转子由永磁材料制成,与转子轴相连的位置传感器采用霍尔传感器。3600范围内,两两相差1200安装,共安装三个。为了提高电机的特性,电机采用二相导通星形三相六状态的工作方式。开关电路采用三相桥式接线方式。

调速以及稳速控制

在调 速 电 路中,主要采用时基电路LM555和脉宽调制器SG1525来完成,LM555用于产生一个占空比一定、且有固定频率的方波信号。SG1525为单片脉宽调制型控制器芯片,具有输出5.1V 的基准稳压电源,误差放大器、振荡频率在100^ 400kHz范围内的锯齿波振荡器、软启动电路、关闭电路、脉宽调制比较器、RS寄存器以及保护电路等。它解决了PWM电路的集成化问题,在实例中用此芯片来实现系统的调速。在具体的电路中,首先对位置传感器信号进行整形,形成所需要的前后沿很陡,具有一定宽度的波形。经微分电路微分,产生的微分脉冲去触发时基电路LM555,形成占空比为2:1的方波,方波频率约为200Hzo

此方波频率计算公式为:f= n * p/ 60式中,Y1为电机的额定转速r/min, f为位置传感器输出信号的频率、P为电机的极对数。方 波 经 滤波器滤波后,形成直流电压送人脉宽调制器,与脉宽调制器的反馈电压进行比较,利用得到的误差信号去控制脉宽调制器输出的调制方波脉冲的宽度变化,即PWM输出脉冲占空比的变化,利用占空比的变化调整加在电机电枢绕组上的电压,改变电压随即改变电机电流,转速依据电流的大小来改变。

结束语:在应用实例中,PWM对调速系统来说,有如下优点:系统的响应速度和稳定精度等指标比较好;电枢电流的脉动量小,容易连续,而且可以不必外加滤波电抗也可以平稳工作;系统的调速范围宽;使用元件少、线路简单。

关键词: 直流无刷电动机;调速控制系统;电动自行车

pwm应用详解

PWM是一种对模拟信号电平进行数字编码的方法。通过高分辨率计数器的使用,方波的占空比被调制用来对一个具体模拟信号的电平进行编码。PWM信号仍然是数字的,因为在给定的任何时刻,满幅值的直流供电要么完全有,要么完全无。电压或电流源是以一种通或断的重复脉冲序列被加到模拟负载上去的。通的时候即是直流供电被加到负载上的时候,断的时候即是供电被断开的时候。只要带宽足够,任何模拟值都可以使用PWM进行编码。

www.9927.com 1PWM控制直流电动机

直流调速器就是调节直流电动机速度的设备,上端和交流电源连接,下端和直流电动机连接,直流调速器将交流电转化成两路输出直流电源,一路输入给直流电机砺磁,一路输入给直流电机电枢,直流调速器通过控制电枢直流电压来调节直流电动机转速。同时直流电动机给调速器一个反馈电流,调速器根据反馈电流来判断直流电机的转速情况,必要时修正电枢电压输出,以此来再次调节电机的转速。

直流电机的调速方案一般有下列3种方式:

1、改变电枢电压;

2、改变激磁绕组电压;

3、改变电枢回路电阻。

使用单片机来控制直流电机的变速,一般采用调节电枢电压的方式,通过单片机控制PWM1,PWM2,产生可变的脉冲,这样电机上的电压也为宽度可变的脉冲电压。根据公式

U=aVCC

其中:U为电枢电压;a为脉冲的占空比(0

电动机的电枢电压受单片机输出脉冲控制,实现了利用脉冲宽度调制技术进行直流电机的变速。

因为在H桥电路中,只有PWM1与PWM2电平互为相反时电机才能驱动,也就是PWM1与PWM2同为高电平或同为低电平时,都不能工作,所以上图中的实际脉冲宽度为B,

我们把PWM波的周期定为1ms,占空比分100级可调,这样定时器T0每0.01ms产生一次定时中断,每100次后进入下一个PWM波的周期。上图中,占空比是60%,即输出脉冲的为0.6ms,断开脉冲为0.4ms,这样电枢电压为5*60%=3V。

我们讨论的是可以正转反转的,如果只按一个方向转,我们就只要把PWM1置为高电平或低电平,只改变另一个PWM2电平的脉冲变化即可,,如下图(Q4导通,Q3闭合,电机只能顺时针调整转动速度)

C语言代码:

#include

#define uchar unsigned char

#define uint unsigned int

sbit K5=P1^4;

sbit K6=P1^5;

sbit PWM1=P1^0;

sbit PWM2=P1^1;

sbit FMQ=P3^6;

uchar ZKB1,ZKB2;

void delaynms

{

??uchar bb;

??while

??{

???for(bb=0;bb<115;bb++)?????//1ms基准延时程序

???{????;

???}

??}?

}

void delay500us

{

int j;

for(j=0;j《57;j++)

{

;

}

}

void beep

{

uchar t;

for(t=0;t《100;t++)

{

delay500us();

FMQ=!FMQ; //产生脉冲

}

FMQ=1; //关闭蜂鸣器

delaynms;

}

void main

{

TR0=0; //关闭定时器0

TMOD=0x01; //定时器0,工作方式1

TH0=(65526-100)/256;

TL0=(65526-100)%256; //100us即0.01ms中断一次

EA=1; //开总中断

ET0=1; //开定时器0中断

TR0=1; //启动定时器T0

ZKB1=50; //占空比初值设定

ZKB2=50; //占空比初值设定

while

{

if

{

delaynms; //消抖

if //确定按键按下

{

beep();

ZKB1++; //增加ZKB1

ZKB2=100-ZKB1; //相应的ZKB2就减少

}

}

if

{

delaynms; //消抖

if //确定按键按下

{

beep();

ZKB1--; //减少ZKB1

ZKB2=100-ZKB1; //相应的ZKB2增加

}

}

if

ZKB1=1;

if

ZKB1=99;

}

}

void time0 interrupt 1

{

staTIc uchar N=0;

TH0=(65526-100)/256;

TL0=(65526-100)%256;

N++;

if

N=0;

if

PWM1=0;

else

PWM1=1;

if

PWM2=0;

else

PWM2=1;

}

//显现:电机转速到最高后,也就是N为1或99时,再按一下,就变到99或1,

//电机反方向旋转以最高速度

随着环境的污染和能源的紧张,电动自行车以无废气污染,无噪音,利用电能和使用方便等优点,越来越受到人们的喜爱,成为生活中的代步交通工具本文介绍采用美国公司Silicon laboratories的高速SoC型C8051F313单片机设计的一种无刷直流电机调速控制系统,该系统充分利用C8051F313的片上资源,设计方案电路简单,需要的外围元件少,控制器的整体成本低,性能好。

C8051F313属于Silabs的高速SOC型单片机C8051F系列C8051F系列单片机集成度高,完全兼容传统的8051单片机内核和指令系统,但其各方面的性能都远远超越了传统的8051单片机f313由于采用了“流水线个系统时钟,突破了传统的8051单片机运行效率低的弱点,特别是它执行乘法指令只要4个系统时钟,执行除法指令只要8个系统时钟另外C8051F系列单片机片上集成了丰富的外设,极大地降低了对外围元器件的需求:模拟多路选择器、f313可编程增益放大器、ADC、DAC、电压比较器、电压基准、温度传感器、SMBus、增强型UART、SPI、可编程计数/定时器阵列、电源监视器、看门狗定时器、时钟振荡器等另外还有片上的FLASH程序存储器、RAM和XRAM在编程语言上,支持汇编和C编程,

整个控制系统主要包括转子位置检测电路、测速电路、调速电路、MOSFET全桥驱动电路、限流电路等,图1是控制系统框图。直流电源通过MOSFET电路向电动机定子绕组供电;转子位置巴基斯坦与中国检测电路检测转子的位置,并根据转子的位置信号来控制MOSFET的导通和截止,从而实现电子换向;测速电路检测电机的转速,调速电路根据测速电路的检测结果,动态地调整电机的转速本设计可根据需要设计成60o或120o电角度换相,

本设计中的无刷直流电动机为三相无刷直流电机,3个霍尔位置传感器的空间间距为120o3个霍尔传感器的输出H1、H2、H3分别直接接到C8051F313的PCA的三个捕捉/比较模块:CEX0、CEX1和CEX2。捕捉/比较模块可以对霍尔吴昌德信号的上升沿和下降沿进行捕捉,并产生中断这种检测无刷电机转子位置的方法比使用A/D转换或使用比较器的方法更具优越性。外围电路简单,几乎不需要任何外围元器件,实时性又非常高,可靠快速地对霍尔信号进行捕捉。同时使用一个定时器对中断的间隔进行计时,这个时间就反映了电机的转速,软件上通过一定的算法处理,就可以得到电机此时的转速这种方法得到的电机转速比较真实地反映了电机的实际转速

这部分电路实际上完成电机换相驱动和调速的功能。C8051F313根据转子位置检测电路的检测结果,对无刷直流电机进行实时的换相驱动,同时根据转速检测电路检测到的转速对无刷直流电机进行调速。本设计采用PWM方式对电枢电压进行控制,实现调速。

图2中的Ua为直流无刷电机电枢两端的电压,PWM的周期为T,改变PWM的占空比,即改变T1的时间,那么直流无刷电机电枢两端的平均电压发生改变,电机的转速也就发生了变化,实现了调速的目的Ua的计算公式为:

这就是直流无刷电机电枢电压的PWM调速的计算公式按照相反的次序给直流无刷电机通电,就可以使用直流无刷电机的反转,

本文由武器装备发布,转载请注明来源:浅谈直流电动机pwm原理【www.9927.com】 pwm应用详解